CEE Ph.D. Defense Announcement: Modeling the Spatiotemporal Heterogeneities of Electric Vehicle Adoption in the United States through Sentiment-Mediated Mechanisms - A Large Language Model-Assisted Data-Fusion Framework
Mingqi Yao, Ph.D. Candidate
UC Irvine, 2025
Chancellor's Professor Emeritus Stephen Ritchie
Abstract: To explain persistent disparities in U.S. electric vehicle adoption, this dissertation develops an innovative, scalable framework that models the mediating mechanisms of public perception in linking structural conditions to adoption outcomes by fusing large-scale social media data with state-level indicators. It introduces novel Large Language Model-assisted methods for high-accuracy sentiment analysis and fine-grained thematic identification, revealing that sentiment-adoption divergence must be examined through detailed perceptual channels. The final study integrates these text-derived perceptual measures with numerical predictors in a time-lagged panel Structural Equation Model to quantify the pathways. Bridging computational social science and econometrics, the research provides tailored and actionable insights for advancing more equitable policy design.
Share
Upcoming Events
-
MSE 298 Seminar: Mechano-Electrochemical Phenomena at Ceramic Electrolyte Interfaces
-
MSE 298 Seminar: Innovation In Materials Science - An Industrial R&D Perspective
-
MSE 298 Seminar: Understanding the Impact of Grain Boundary Inclination on Grain Growth Using Modeling and Simulation and Experiments
-
EECS Seminar: Mixed Conductors for Bioelectronics
-
MSE 298 Seminar: Ionic Correlations in Polymer Nanostructures - From Block Copolymers to End-Charged Blends